A New Organic-inorganic Hybrid Nanocomposite, BEDT-TTF Intercalated into Layered FePS₃

XINGGUO CHEN¹, HUIQIONG ZHOU¹, LI ZOU¹, CHULUO YANG¹, JINGUI QIN^{1,*} and MAKOTO INOKUCHI²

¹Department of Chemistry, Wuhan University, Wuhan, 430072, China; ²Department of Materials Science and Engineering, Science University of Tokyo in Yamaguchi, Onoda, Yamaguchi, 756-0884, Japan

(Received: 5 August 2004; in final form: 9 February 2005)

Key words: intercalation, BEDT-TTF, layered FePS₃, magnetic property

Abstract

A new inorganic–organic hybrid compound, $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$ (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene), has been synthesized by the reaction of the pre-intercalate $Fe_{0.90}PS_3(Phen)_{0.41}$ (phen = 1,10phenanthroline) with (BEDT-TTF)₂I_x. The powder X-ray diffraction (XRD) results show that the expansion of the lattice spacing (Δ d) is about 4.0 Å compared with the pristine FePS₃, indicating that the molecular ring plane of the guest is parallel to the layer of the host. The infrared spectrum of the intercalate shows the existence of BEDT-TTF as a guest between the interlayer region of the layered FePS₃. The room-temperature electrical conductivity of the compressed pellet of Fe_{0.76}PS₃(BEDT-TTF)_{0.48} is about 10⁻⁷ S/cm, which is in the same order of magnitude as that of the pristine FePS₃(~10⁻⁷ S/cm). The magnetic properties measured with a SQUID-magnetometer indicate that Fe_{0.76}PS₃(BEDT-TTF)_{0.48} exhibits the paramagnetism from 120 to 300 K and Curie-Weiss Law was obeyed above 140 K, but a strong antiferromagnetic phase transition occurs at T_N of 100 K.

Introduction

In recent years, intercalated MPS₃ compounds have attracted considerable attention of scientists due to interesting electronic and magnetic properties [1-4]. Transition metal phosphorous trisulfides (hexathiohypodiphosphates) MPS₃, (M=Mn, Fe, Co, Ni, Zn and Cd, etc.) are layered compounds and crystallize to space group C2/m, a monoclinic unite cell related to CdCl₂-type structure with metal ions and phosphorusphosphorus pairs occupying the cadmium positions and sulfur ions occupying the chloride positions, so M ions construct a honeycomb lattice in the *ab* plane and they are separated by Van der Waals gap between hexagonal layers of sulfur ions [5, 6]. Many MPS₃ phases showed paramagnetism at high temperature range and become antiferromagnets below the Neel temperature (78 K for MnPS₃, 120 K for FePS₃ and 153 K for NiPS₃, respectively) [7]. Several MPS₃ compounds such as M = Mn, Fe, etc. possess a unique non-redox intercalation reaction based on the cation-exchange between the intralamellar M^{2+} ions of the host and the guest cations in the solution where the inserted guests can compensate the intralamellar M²⁺ ion vacancies to

maintain the charge balance [8, 9]. After intercalation, the magnetic property of some intercalates can be dramatically changed [10–12].

Tetrathiafulvalene (TTF) and its derivatives such as bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF), as the excellent organic electron-donors, have constituted a series of organic conductors and superconductors [13-16]. The inorganic-organic hybrids based on the inorganic anions and BEDT-TTF salts have been extensively studied and some novel solid-state physical properties such as paramagnetic superconductivity and metallic-like conductive ferromagnetism have been exhibited [17, 18]. In addition, the intercalates of TTF into some layered hosts, such as FeOCl, Montmorillonite (MT) or MPS₃ etc, exhibit much higher conductivity than that of the corresponding pure host compounds owing to their column stacking arrangement of the mixed-valence TTF molecules between the layers of the host [19-22]. However, since Bringley et al. firstly reported BEDT-TTF-FeOCl intercalation compound in 1990 [23], few inorganic-organic hybrid intercalation nanocomposites based on BEDT-TTF molecules inserted into layered inorganic materials have been reported, and we had synthesized the intercalate of BEDT-TTF into layered MnPS₃ [24]. Compared with MnPS₃ and its intercalates the FePS₃ host showed

^{*} Author for correspondence. E-mail: jgqin@whu.edu.cn

higher conductivity and especially some FePS₃ intercalation compounds exhibited ferromagantism with higher Curie temperature ($T_C = 70 \sim 90$ K) than those of MnPS₃ [25]. Therefore, it deserves more study on the intercalation of BEDT-TTF into layered FePS₃, which may produce new physical properties. In this paper, we present synthesis, structural characterization and some physical properties of the resulting intercalation material.

Experimental

X-ray powder diffraction (XRD) patterns were obtained with Dmax rA X-ray diffractometer using Cu K_{α} radiation (λ =1.5418 Å). Infrared spectra were performed on a Nicolet-170SX Fourier transform spectrometer. UV-vis spectra were conducted on Shimadzu UV-1206 spectrometer. Elemental analysis of carbon, hydrogen and nitrogen was performed with a Carloerba-1106 micro-analyzer. The content of iron and phosphorus were measured by the method of ICP-AES with an Atomscan-2000 instrument. The conductivity was measured with classical two-probe method. Thermogravimetric analysis (TGA) was conducted in a Rigaku Thermoflex TG 8110 at a heating rate of 10 °C/min. The magnetic property was studied by SQUID-magnetometer (MPMS, Quantum Design).

Pure FePS₃was synthesized as described by Taylor *et al.*, which was identified by means of XRD and indexed in a monoclinic unit cell (space group C2/m, d = 6.439 Å, a = 5.934 Å, b = 10.280 Å, c = 6.722 Å, $\beta = 107.16$ °) [26].

 $Fe_{0.90}PS_3(phen)_{0.41}$ was synthesized according to the literature method [27]. Fe_{0.76}PS₃(BEDT-TTF)_{0.48} was obtained by treating Fe_{0.90}PS₃(phen)_{0.41} (0.20 g) with $(BEDT-TTF)_2I_x$ (0.40 g) in the dry acetonitrile (20 ml) for two months at 60 °C, followed by filtration and washing several times with dichloromethane and acetonitrile, respectively. Elemental analyses led to the stoichiometry of the intercalate to be Fe_{0.76}PS₃(BEDT-TTF)_{0.48} (Found: Fe, 12.02; C, 16.37; H, 1.05; P, 8.79 (%). Calculated: Fe, 11.98; C, 16.28; H, 1.09; P, 8.74 (%)). TGA of the intercalate powder shows a single step weight loss from about 240 to 600 °C, where the total weight loss is 55.52%. This result is in agreement with the molecular formula as Fe_{0.76}PS₃ (BEDT-TTF)_{0.48} that gives the calculated total weight loss of 52.12% if only the organic species are completely decomposed.

Results and discussion

Synthesis

In the synthesis of $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$, it was found that the UV-vis spectrum of the filtrate for preparation of intercalate $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$ combines the spectra of $[Fe(phen)_3]I_2$ and $(BEDT-TTF)_{0.48}$

Figure 1. The UV-vis spectra of $[Fe(phen)_3]I_2$ in acetonitrile (a), $(BEDT-TTF)_2I_x$ in acetonitrile (b) and the filtrate of $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$ (c).

TTF)₂I_x in acetonitrile, which shows two characteristic λ_{max} at around 360 and 510 nm (Figure 1). The absorption at 510 nm is the characteristic absorption band of Fe(phen)₃²⁺ indicating the occurrence of Fe (phen)₃²⁺ in the filtrate [28]. It is clear that 1,10-phenanthroline acting as a complex agent which removes extra intralamellar Fe²⁺ ions into the solution during the intercalation. Thus, there exist more Fe²⁺ ion vacancies in the intralayer sites of Fe_{0.76}PS₃(BEDT-TTF)_{0.48} than that of pre-intercalate Fe_{0.90}P-S₃(phen)_{0.41}.

Powder X-ray diffraction

The occurrence of the intercalation is ascertained by the XRD of the final product (Figure 2). The reflections of pre-intercalate Fe_{0.90}PS₃(phen)_{0.41} are fully absent in the XRD patterns of the intercalate. Instead, a new series of reflection peaks appeared, which is also different from those of pristine FePS₃ (Figure 2). The lamellar distance of the intercalate is 10.4 Å, expanding by 4.0 Å with respect to the pristine FePS₃ indicating the orientation of BEDT-TTF molecular plane is parallel to layer of the host similar to that of pyridine molecule inserted into FePS₃ [25] (Figure 3). This expansion is much different from that of BEDT-TTF intercalated in FeOCl, where the increasing space is around $14.0 \sim 15.0$ A, indicating that the long C₂ axial of BEDT-TTF molecule is arranged in a canted angle from the perpendicular with respect to FeOCl layers [23]. From the XRD patterns it is obviously found that the reflection patterns of $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$ is not sharper than those of pure FePS₃ and pre-intercalate Fe_{0.90}PS₃(phen)_{0.41}. This clearly shows that the crystallinity of this intercalate is

Figure 2. The XRD patterns of pure FePS₃, pre-intercalate $Fe_{0.90}P-S_3$ (phen)_{0.41} (1) and Intercalate $Fe_{0.76}PS_3$ (BEDT-TTF)_{0.48} (2).

Figure 3. The possible orientation of BEDT-TTF molecule between the interlayer region of $FePS_3$.

not as good as that of pure $FePS_3$ and pre-intercalate $Fe_{0.90}PS_3(phen)_{0.41}$.

Infrared spectra

Figure 4 shows the IR spectra of pre-intercalate $Fe_{0.90}PS_3(phen)_{0.41}$, intercalate $Fe_{0.76}PS3(BEDT-TTF)_{0.48}$, BEDT-TTF for comparison.

In general, the intercalation compounds based on MPS₃ (M = Mn, Fe, Cd etc) have two or three sharp absorptions in the range of $550 \sim 610 \text{ cm}^{-1}$, which are assigned to the (PS₃) asymmetric stretching band coming from the splitting of 570 cm^{-1} in pure MPS₃ owing to departure of a fraction of ions into the solution during the intercalation. The occurrence of the intralamellar M²⁺ vacancies makes the P–S bonds in the group of PS₃ unequivalent because some of PS₃ groups are surrounding the M²⁺ ions [25]. Therefore, the infrared absorptions at 610, 590 and 556 cm⁻¹ in the Fe_{0.76}

Figure 4. The comparison of IR spectra of pre-intercalate $Fe_{0.90}$ PS₃(phen)_{0.41}, intercalate $Fe_{0.76}$ PS₃(BEDT-TTF)_{0.48} and BEDT-TTF.

PS₃(BEDT-TTF)_{0.48}, which is similar to those of TTF inserted into MPS₃ (M = Mn, Fe) [29], are assigned to $v(PS_3)$ asymmetric stretching vibration of the host. This comes from the splitting of 570 cm⁻¹ in pure FePS₃, reflecting the presence of intralayer Fe²⁺ ion vacancies. In the range of 650~1700 cm⁻¹, the infrared spectrum of Fe_{0.76}PS₃(BEDT-TTF)_{0.48} shows the similar characteristic absorption bands (at around 1408, 1285, 918 and 770 cm⁻¹) to those of BEDT-TTF molecule [30]. It also proves that the existence of BEDT-TTF as a guest inserted into the interlayer region between the host layers.

Electrical conductivity and magnetic properties

The conductivity of $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$ (as the compressed pellet) at room temperature measured with two-probe method is about 10^{-7} s cm⁻¹, which is at the same order of magnitude to the pristine FePS₃ ($\sim 10^{-7}$ s cm⁻¹). From the XRD result, it was found that the orientation of BEDT-TTF molecule ring plane is arranged parallel to layer of the host. Apparently, the BEDT-TTF molecules cannot arranged in the column stacking in the interlayer region, so the conductivity of interaction compound is due to the host layer.

The magnetic properties of $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$ were studied with a SQUID magnetometer. The antiferromagnetic transition at around 120 K in pure FePS₃ no longer exists. Figure 5 displays the molar susceptibility versus temperature and Figure 6 shows the plot of χT versus T of Fe_{0.76}PS₃(BEDT-TTF)_{0.48}.

Figure 5 clearly shows the antiferromagnetic phase transition at around 100 K. The χ T value slightly decreases from 300 to 130 K shown by the plot of χ T vs. T (in Figure 6), which indicates that the coupling interaction between the Fe²⁺ ions is a weak antiferromagnetic one in the paramagnetic range. This behavior is confirmed by the inverse of the paramagnetic susceptibility of Fe_{0.76}PS₃(BEDT-TTF)_{0.48} displayed as a function of temperature (Figure 5). Above 140 K, the

Figure 5. The temperature dependence of magnetic susceptibility and inverse of magnetic susceptibility of $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$.

Figure 6. The plot of χT vs. T of Fe_{0.76}PS₃(BEDT-TTF)_{0.48}.

inverse of the paramagnetic susceptibility fits to Curie-Weiss Law very well. The Curie constant is $3.03 \text{ emu K} \text{mol}^{-1}$ and the effective magnetic moment per Fe²⁺ ion is evaluated as 4.92 BM, which is closed to that of the spin-only value of high spin Fe²⁺ ion (4.94 BM) [31]. This suggests that the Fe²⁺ ion is still in the +2 oxidation state in Fe_{0.76}PS₃(BEDT-TTF)_{0.48} after intercalation. The Curie–Weiss temperature (θ) is only -24.69 K that also reflects the weak localized antiferromagnetic coupling interaction between the Fe²⁺ ions due to the strong dilution of the more intralamellar Fe²⁺ ion vacancies of the host in the high temperature range. Below 120 K, the χ T value decreases rapidly, which supports the occurrence of strong antiferromagnetic phase transition too.

Conclusion

The intercalate, $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$, is synthesized though the ion exchange of the pre-intercalate $Fe_{0.90}PS_3(phen)_{0.41}$ with $(ET)_2I_x$. The structural characterization is ascertained with XRD and IR spectra as well as the elemental analysis, in which XRD result indicates that the BEDT-TTF molecules is adapted in parallel orientation to the layer of the host. For the compressed pellet of $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$, the room-temperature electrical conductivity of $\sim 10^{-7}$ S/cm is about the same order of magnitude to that of pure FePS₃. The magnetic measurements indicate that $Fe_{0.76}PS_3(BEDT-TTF)_{0.48}$ exhibits an antiferromagnetic transition at T_N of 100 K and the curve of the inverse of the molar susceptibility versus temperature obeys the Curie–Weiss Law above 140 K.

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for financial support.

References

- P.G. Lacroix, R. Clement, K. Nakatani, J. Zyss, and I. Ledoux: Science 263, 558 (1994).
- S. Floquet, S. Salunke, M.L. Boillot, R. Clement, F. Varret, K. Boukheddaden, and E. Riviere: *Chem. Mater.* 14 (10) 4164 (2002).
- N. Arun, S. Vasudevan, and K.V. Ramanathan: J. Am. Chem. Soc. 122, 6028 (2000).
- 4. A. Leaustic, E. Riviere, and R. Clement: *Chem. Mater.* **15** (25) 4784 (2003).
- 5. W. Klingen, R. Ott, H. Hahn, and Z. Anorg: *Allg. Chem.* **396**, 271 (1973).
- E. Prouzet, G. Ouvrard, and R. Brec: *Mater. Res. Bull.* 21, 195 (1986).
- 7. R. Brec: Solid State Ionics 22, 3 (1986).
- 8. R. Clement: J. Chem. Soc., Chem. Commun. 647 (1980).
- R. Clement, J.J. Girerd, and I.M. Badarau: *Inorg. Chem.* 19, 2852 (1980).
- 10. P.A. Joy and S. Vasudevan: J. Am. Chem. Soc. 114, 7792 (1992).
- J. Qin, C. Yang, K. Yakushi, Y. Nakazawa, and K. Ichimura: Solid State Commun. 100 (6) 427 (1996).
- A. Leaustic, J.P. Audiere, D. Cointereau, R. Clement, L. Lomas F. Varret, and H. Constant-Machado: *Chem. Mater.* 8, 1954 (1996).
- 13. P. Day and M. Kurmoo: J. Mater. Chem. 7, 1291 (1997).
- K. Murato, M. Tokumoto, H. Anzai, H. Bando, G. Sarro, K. Kajimura, and T. Ishiguro: J. Phys. Soc. Jpn. 54, 1236 (1985).
- H. Ito, T. Kondo, H. Sasaki, G. Satio, and T. Ishiguro: Synth. Met. 103, 1818 (1999).
- J.F. Bringley, J.M. Fabre, and B.A. Averill: J. Am. Chem. Soc. 112, 4577 (1990).
- E. Coronado, J.R. Galan-Mascaros, C.J. Gomez-Garcia, and V. Laukhin: *Nature* 408, 470 (2000).
- M. Kurmoo, A.W. Graham, P. Day, S.J. Coles, M.B. Hursthouse, J.L. Cauifield, J. Singleton, F.L. Pratt, W. Hayes, L. Ducasse, and P. Guionneau: J. Am. Chem. Soc. 117, 12209 (1995).
- M.R. Antonio and B.A. Averill: J. Chem. Soc., Chem. Commun. 382 (1981).
- 20. M. Soma and Y. Soma: Chem. Lett. 405 (1988).
- P. Lacroix, J.P. Audiere, and R. Clement: J. Chem. Soc., Chem. Commun. 536 (1989).
- 22. L. Lomas, P. Lacroix, J.P. Audiere, and R. Clement: J. Mater. Chem. 1, 475 (1991).
- J.F. Bringley, J.M. Fabre, and B.A. Averill: J. Am. Chem. Soc. 112, 4577 (1990).
- 24. C. Yang, J. Qin, K. Yakushi, Y. Nakazawa, and K. Ichimura: *Synth. Met.* **102**, 1482 (1999).
- A. Leaustic, J.P. Audiere, D. Cointereau, R. Clement, L. Lomas, F. Varret, and H. Constant-Machado: *Chem. Mater.* 8, 1954 (1996).
- B.E. Taylor, J. Steger, and A. Wold: J. Solid State Chem. 7, 461 (1973).

- 27. X. Chen, C. Yang, J. Qin, K. Yakushi, Y. Nakazawa, and K. Ichimura: *Chin. J. Chem.* **18**, 510 (2000).
- 28. A.E. Harvey Jr., J.A. Smart, and E.S. Amis: Anal. Chem. 27, 26 (1955).
- 29. T. Coradin, R. Clement, P.G. Lacroix, and K. Nakatani: Chem. Mater. 8, 2153 (1996).
- A. Leaustic, J.P. Audiere, P.G. Lacroix, R. Clement, L. Lomas, A. Michalowicz, W.R. Dunham, and A.H. Francis: *Chem. Mater.* 7, 1103 (1995).
- 31. P.A. Joy and S. Vasudevan: Phys. Rev. B 46, 5425 (1992).